Engineered T cell remedy for central nervous system damage
GBD 2016 Traumatic Mind Damage and Spinal Wire Damage Collaborators.International, regional, and nationwide burden of traumatic mind damage and spinal wire damage, 1990–2016: a scientific evaluation for the International Burden of Illness Research 2016. Lancet Neurol. 18, 56–87 (2019).
Daglas, M. et al. Activated CD8+ T cells trigger long-term neurological impairment after traumatic mind damage in mice. Cell Rep. 29, 1178–1191.e6 (2019).
Moalem, G. et al. Autoimmune T cells defend neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55 (1999).
Kipnis, J., Mizrahi, T., Yoles, E., Ben-Nun, A. & Schwartz, M. Myelin particular Th1 cells are crucial for post-traumatic protecting autoimmunity. J. Neuroimmunol. 130, 78–85 (2002).
Miller, S. D., Karpus, W. J. & Davidson, T. S. Experimental autoimmune encephalomyelitis within the mouse. Curr. Protoc. Immunol. 88, 15.1.1–15.1.20 (2010).
Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E. & Kuchroo, V. Okay. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with totally different pathological phenotypes. J. Immunol. 183, 7169–7177 (2009).
Wei, S. C., Duffy, C. R. & Allison, J. P. Elementary mechanisms of immune checkpoint blockade remedy. Most cancers Discov. 8, 1069–1086 (2018).
June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human most cancers. Science 359, 1361–1365 (2018).
Goverman, J. Autoimmune T cell responses within the central nervous system. Nat. Rev. Immunol. 9, 393–407 (2009).
Bradbury, E. J. & Burnside, E. R. Transferring past the glial scar for spinal wire restore. Nat. Commun. 10, 3879 (2019).
Cohen, M. et al. Meningeal lymphoid constructions are activated underneath acute and power spinal wire pathologies. Life Sci. Alliance 4, e202000907 (2021).
Crosby, C. M. & Kronenberg, M. Tissue-specific features of invariant pure killer T cells. Nat. Rev. Immunol. 18, 559–574 (2018).
Klein, L., Klugmann, M., Nave, Okay. A., Tuohy, V. Okay. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat. Med. 6, 56–61 (2000).
Harrington, C. J. et al. Differential tolerance is induced in T cells recognizing distinct epitopes of myelin fundamental protein. Immunity 8, 571–580 (1998).
Miyauchi, E. et al. Intestine microorganisms act collectively to exacerbate irritation in spinal cords. Nature 585, 102–106 (2020).
ElTanbouly, M. A. & Noelle, R. J. Rethinking peripheral T cell tolerance: checkpoints throughout a T cell’s journey. Nat. Rev. Immunol. 21, 257–267 (2021).
Holst, J. et al. Era of T-cell receptor retrogenic mice. Nat. Protoc. 1, 406–417 (2006).
Basso, D. M. et al. Basso Mouse Scale for locomotion detects variations in restoration after spinal wire damage in 5 frequent mouse strains. J. Neurotrauma 23, 635–659 (2006).
Andreatta, M. et al. A CD4+ T cell reference map delineates subtype-specific adaptation throughout acute and power viral infections. eLife 11, e76339 (2022).
Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics information utilizing reference atlases. Nat. Commun. 12, 2965 (2021).
Shechter, R. et al. Infiltrating blood-derived macrophages are very important cells enjoying an anti-inflammatory function in restoration from spinal wire damage in mice. PLoS Med. 6, e1000113 (2009).
Muhl, H. & Pfeilschifter, J. Anti-inflammatory properties of pro-inflammatory interferon-γ. Int. Immunopharmacol. 3, 1247–1255 (2003).
Sosa, R. A., Murphey, C., Robinson, R. R. & Forsthuber, T. G. IFN-γ ameliorates autoimmune encephalomyelitis by limiting myelin lipid peroxidation. Proc. Natl Acad. Sci. USA 112, E5038–E5047 (2015).
Miller, N. M., Wang, J., Tan, Y. & Dittel, B. N. Anti-inflammatory mechanisms of IFN-γ studied in experimental autoimmune encephalomyelitis reveal neutrophils as a possible goal in a number of sclerosis. Entrance. Neurosci. 9, 287 (2015).
Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from grownup stem/progenitor cells. Mol. Cell. Neurosci. 31, 149–160 (2006).
Butovsky, O. et al. Induction and blockage of oligodendrogenesis by in a different way activated microglia in an animal mannequin of a number of sclerosis. J. Clin. Make investments. 116, 905–915 (2006).
Shaked, I. et al. Protecting autoimmunity: interferon-γ allows microglia to take away glutamate with out evoking inflammatory mediators. J. Neurochem. 92, 997–1009 (2005).
Mojic, M., Takeda, Okay. & Hayakawa, Y. The darkish aspect of IFN-γ: its function in selling most cancers immunoevasion. Int. J. Mol. Sci. 19, 89 (2017).
Zhao, H. et al. Irritation and tumor development: signaling pathways and focused intervention. Sign Transduct. Goal. Ther. 6, 263 (2021).
Jing, Z. L. et al. Interferon-γ within the tumor microenvironment promotes the expression of B7H4 in colorectal most cancers cells, thereby inhibiting cytotoxic T cells. Sci. Rep. 14, 6053 (2024).
Dorrier, C. E. et al. CNS fibroblasts type a fibrotic scar in response to immune cell infiltration. Nat. Neurosci. 24, 234–244 (2021).
Ise, W. et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat. Immunol. 11, 129–135 (2010).
Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a intestine pathobiont. Nature 554, 373–377 (2018).
Petersen, T. R. et al. Characterization of MHC- and TCR-binding residues of the myelin oligodendrocyte glycoprotein 38–51 peptide. Eur. J. Immunol. 34, 165–173 (2004).
Wan, X. et al. Pancreatic islets talk with lymphoid tissues by way of exocytosis of insulin peptides. Nature 560, 107–111 (2018).
Kacen, A. et al. Put up-translational modifications reshape the antigenic panorama of the MHC I immunopeptidome in tumors. Nat. Biotechnol. 41, 239–251 (2023).
Pulous, F. E. et al. Cerebrospinal fluid can exit into the cranium bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat. Neurosci. 25, 567–576 (2022).
Rustenhoven, J. et al. Useful characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021).
Glanville, J. et al. Figuring out specificity teams within the T cell receptor repertoire. Nature 547, 94–98 (2017).
Kunis, G. et al. IFN-γ-dependent activation of the mind’s choroid plexus for CNS immune surveillance and restore. Mind 136, 3427–3440 (2013).
Gadani, S. P., Walsh, J. T., Smirnov, I., Zheng, J. & Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes restoration following CNS damage. Neuron 85, 703–709 (2015).
Lima, R. et al. Systemic interleukin-4 administration after spinal wire damage modulates irritation and promotes neuroprotection. Prescribed drugs 10, 83 (2017).
McCarthy, D. J., Campbell, Okay. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, high quality management, normalization and visualization of single-cell RNA-seq information in R. Bioinformatics 33, 1179–1186 (2017).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic information throughout totally different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).
Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level evaluation of single-cell RNA-seq information with Bioconductor. F1000Res. 5, 2122 (2016).
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: Community visualizations of relationships in psychometric information. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i04 (2012).
Bais, A. S. & Kostka, D. scds: Computational annotation of doublets in single-cell RNA sequencing information. Bioinformatics 36, 1150–1158 (2020).
Huang, H., Wang, C., Rubelt, F., Scriba, T. J. & Davis, M. M. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat. Biotechnol. 38, 1194–1202 (2020).
Van den Berge, Okay. et al. Commentary weights unlock bulk RNA-seq instruments for zero inflation and single-cell purposes. Genome Biol. 19, 24 (2018).
Robinson, M. D., McCarthy, D. J. & Smyth, G. Okay. edgeR: a Bioconductor bundle for differential expression evaluation of digital gene expression information. Bioinformatics 26, 139–140 (2010).
Hong, G., Zhang, W., Li, H., Shen, X. & Guo, Z. Separate enrichment evaluation of pathways for up- and downregulated genes. J. R. Soc. Interface 11, 20130950 (2014).
Yu, G., Wang, L. G., Han, Y. & He, Q. Y.clusterProfiler: an R bundle for evaluating organic themes amongst gene clusters. OMICS 16, 284–287 (2012).
Baccin, C. et al. Mixed single-cell and spatial transcriptomics reveal the molecular, mobile and spatial bone marrow area of interest group. Nat. Cell Biol. 22, 38–48 (2020).
Korotkevich, G. et al. Quick gene set enrichment evaluation. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).