string(0) ""

Area radiation measurements in the course of the Artemis I lunar mission


  • Patel, Z. S. et al. Pink dangers for a journey to the pink planet: the best precedence human well being dangers for a mission to Mars. npj Microgravity 6, 33 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sishc, B. J. et al. The necessity for organic countermeasures to mitigate the chance of area radiation-induced carcinogenesis, heart problems, and central nervous system deficiencies. Life Sci. Area Res. 35, 4–8 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Parsons, J. L. & Townsend, L. W. Interplanetary crew dose charges for the August 1972 photo voltaic particle occasion. Radiat. Res. 153, 729–733 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mewaldt, R. A. et al. Report-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett 723, L1 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Selesnick, R. S., Baker, D. N., Kanekal, S. G., Hoxie, V. C. & Li, X. Modeling the proton radiation belt with Van Allen Probes relativistic electron-proton telescope information. J. Geophys. Res. Area Phys. 123, 685–697 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Desai, M. & Giacalone, J. Giant gradual photo voltaic energetic particle occasions. Residing Rev. Sol. Phys. 13, 3 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeitlin, C. et al. Outcomes from the Radiation Evaluation Detector on the Worldwide Area Station: half 1, the Charged Particle Detector. Life Sci. Area Res. 39, 67–75 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berger, T. et al. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL devices onboard the Columbus Laboratory of the ISS within the years 2009–2016. J. Area Climate Area Clim. 7, A8 (2017).

    Article 

    Google Scholar
     

  • Zeitlin, C. et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340, 1080–1084 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwadron, N. A. et al. Replace on the worsening particle radiation setting noticed by CRaTER and implications for future human deep-space exploration. Area Climate 16, 289–303 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schaefer, H. J., Benton, E. V., Henke, R. P. & Sullivan, J. J. Nuclear monitor recordings of the astronauts’ radiation publicity on the primary lunar touchdown mission Apollo XI. Radiat. Res. 49, 245–271 (1972).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • English, R. A., Benson, R. E., Bailey, J. V. & Barnes, C. M. Apollo expertise report: safety towards radiation. NASA https://ntrs.nasa.gov/citations/19730010172 (1973).

  • Fleischer, R. L. et al. Apollo 14 and Apollo 16 heavy-particle dosimetry experiments. Science 181, 436–438 (1973).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huff, J. L. et al. Galactic cosmic ray simulation on the NASA Area Radiation Laboratory—progress, challenges and proposals on mixed-field results. Life Sci. Area Res. 36, 90–104 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gaza, R. et al. Orion EM-1 Inside Setting Characterization: The Matroshka AstroRad Radiation Experiment (NASA, 2019); https://ntrs.nasa.gov/citations/20190026525.

  • Berger, T. et al. NASA Artemis I mission and the MARE Experiment (NASA, 2023); https://wrmiss.org/workshops/twentysixth/Berger_MARE.pdf.

  • Stoffle, N. N. et al. HERA: a Timepix-based radiation detection system for Exploration-class area missions. Life Sci. Area Res. 39, 59–65 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Straube, U., Berger, T. & Dieckmann, M. The ESA Lively Dosimeter (EAD) system onboard the Worldwide Area Station (ISS). Z. Med. Phys. 34, 111–139 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Berger, T. et al. The German Aerospace Middle M-42 radiation detector—a brand new growth for functions in combined radiation fields. Rev. Sci. Instrum. 90, 125115 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaza, R. et al. The significance of time-resolved private dosimetry in area: the ISS Crew Lively Dosimeter. Life Sci. Area Res. 39, 95–105 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cucinotta, F. A. et al. Area radiation most cancers dangers and uncertainties for Mars missions. Radiat. Res. 156, 682–688 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mertens, C. J., Slaba, T. C. & Hu, S. Lively dosimeter-based estimate of astronaut acute radiation threat for real-time photo voltaic energetic particle occasions. Area Climate 16, 1291–1316 (2018).

    Article 
    ADS 

    Google Scholar
     

  • NASA Area Flight Human-System Normal: Quantity 1: Crew Well being (NASA, 2022); https://www.nasa.gov/websites/default/recordsdata/atoms/recordsdata/2022-01-05_nasa-std-3001_vol.1_rev._b_final_draft_with_signature_010522.pdf.

  • Allen, J., Sauer, H., Frank, L. & Reiff, P. Results of the March 1989 photo voltaic exercise. Eos Trans. Am. Geophys. Union 70, 1479–1488 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Hu, S. & Semones, E. A Multi-Supply Calibrated GOES Dataset and Photo voltaic Radiation Setting Mannequin Replace (NASA, 2022); https://ntrs.nasa.gov/citations/20220008181.

  • O’Brien, T. P. et al. Modifications in AE9/AP9-IRENE model 1.5. IEEE Trans. Nucl. Sci. 65, 462–466 (2018).

    Article 
    ADS 

    Google Scholar
     

  • van den Berg, J., Strauss, D. T. & Effenberger, F. A primer on centered photo voltaic energetic particle transport. Area Sci. Rev. 216, 146 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, J. W., Slaba, T. C., Badavi, F. F., Reddell, B. D. & Bahadori, A. A. Advances in NASA radiation transport analysis: 3DHZETRN. Life Sci. Area Res. 2, 6–22 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Slaba, T. C., Wilson, J. W., Werneth, C. M. & Whitman, Ok. Up to date deterministic radiation transport for future deep area missions. Life Sci. Area Res. 27, 6–18 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Norbury, J. W., Slaba, T. C., Sobolevsky, N. & Reddell, B. Evaluating HZETRN, SHIELD, FLUKA and GEANT transport codes. Life Sci. Area Res. 14, 64–73 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Singleterry, R. C. et al. OLTARIS: on-line software for the evaluation of radiation in area. Acta Astronaut. 68, 1086–1097 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Strategies Phys. Res. A 506, 250–303 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Slaba, T. C. & Whitman, Ok. The Badhwar-O’Neill 2020 GCR mannequin. Area Climate 18, e2020SW002456 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Worldwide Fee on Radiological Safety 1990 Suggestions of the Worldwide Fee on Radiological Safety ICRP Publication 60 (Pergamon Press, 1991).

  • Nationwide Academies of Sciences Area Radiation and Astronaut Well being: Managing and Speaking Most cancers Dangers (Nationwide Academies Press, 2021); https://doi.org/10.17226/26155.

  • Drake, B. G., Hoffman, S. J. & Beaty, D. W. Human exploration of Mars, Design Reference Structure 5.0. In Proc. 2010 IEEE Aerospace Convention 1–24 (IEEE, 2010).

  • Hassler, D. M. et al. Mars’ floor radiation setting measured with the Mars Science Laboratory’s Curiosity rover. Science 343, 1244797 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pure radiation in Germany. Federal Workplace for Radiation Safety https://www.bfs.de/EN/subjects/ion/setting/natural-radiation/natural-radiation.html (2023).

  • Matthiä, D., Burmeister, S., Przybyla, B. & Berger, T. Lively radiation measurements over one photo voltaic cycle with two DOSTEL devices within the Columbus laboratory of the Worldwide Area Station. Life Sci. Area Res. 39, 14–25 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. First measurements of the radiation dose on the lunar floor. Sci. Adv. 6, eaaz1334 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeitlin, C. et al. Measurements of radiation high quality issue on Mars with the Mars Science Laboratory Radiation Evaluation Detector. Life Sci. Area Res. 22, 89–97 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Llopart, X., Ballabriga, R., Campbell, M., Tlustos, L. & Wong, W. Timepix, a 65k programmable pixel readout chip for arrival time, vitality and/or photon counting measurements. Nucl. Instrum. Strategies Phys. Res. A 581, 485–494 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ballabriga, R., Campbell, M. & Llopart, X. An introduction to the Medipix household ASICs. Radiat. Meas. 136, 106271 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Holy, T. et al. Sample recognition of tracks induced by particular person quanta of ionizing radiation in Medipix2 silicon detector. Nucl. Instrum. Strategies Phys. Res. A 591, 287–290 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jakubek, J. Exact vitality calibration of pixel detector working in time-over-threshold mode. Nucl. Instrum. Strategies Phys. Res. A 633, S262–S266 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kroupa, M., Campbell-Ricketts, T., Bahadori, A. & Empl, A. Strategies for exact vitality calibration of particle pixel detectors. Rev. Sci. Instrum. 88, 033301 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • George, S. P. et al. Very excessive vitality calibration of silicon Timepix detectors. J. Instrum. 13, P11014 (2018).

    Article 

    Google Scholar
     

  • Latest articles

    Related articles